
i . 'il ' .

Imprecise Results:

Utilizing Partial Computations in Real-Time Systems

Kwei-Jay Lin
Swaminathan Natarajan

Jane W.-S. Liu

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield Avenue
Urbana, Illinois 61801

{klin, swami, j a n e l i u) @ a . c s . uiuc. edu
(21 7) 939-1 4 24

April 15, 1987

(N A S A - C R - 18OS6 1) I d P E E C I S E fiESlJL'1S: N87-265 19
G'IIILXZXIG P A P T I d l CCBPOTATICbS Ili EEAL-TIIE
5YSTEBS (I l l i n c i s Unio.) 23 F A v a i l : NZXS
EC Ac2/IlF A C 1 CSCL 09B Unclas

G 3 / 6 1 0069622

This work was partially supported by the XASA Contract XAG-1-613.

Imprecise Results:

Utilizing Partial Computations in Real-Time Systems

Abstract

In real-time systems, a computation may not have time to complete its execution because of

deadline requirements. In such cases. no result except the approximate results produced by the

computation up to that point will be available. It is desirable to utilize these imprecise results if

possible. We propose two approaches to enable computations to return imprecise results when

executions cannot be completed normally. The milestone approach records results periodically.

and if a deadline is reached, returns the last recorded result. The sieve approach demarcates

sections of code which can be skipped if the time available is insufficient. By using these

approaches, the system is able to produce imprecise results when deadlines are reached. We

describe the design of the Concord project which supports imprecise computations using these

techniques. We also present a general model of imprecise computations which takes into account

the influence of the environment, and show where our approach fits into this model.

1

1. Introduction

In real-time computations, deadlines are crucial. A hard real-time system must finish its

computation before its deadline or something undesirable might happen. X real-time system

typically consists of many small jobs. Normally, real-time systems rely on their schedulers to

decide when and which job is to be executed next. Schedulers, in turn, rely on the knowledge

supplied by the programmer and the specification about job execution times, job dependency

relationships, and the system deadline to make the scheduling decision. This works well as long

as the system environment is static in the sense that the execution time of each job is fixed, the

deadline requirement is fixed, and the number of jobs to be executed is constant. Much research

~Liu73,Blazewics83] has been done in using different policies to provide a static scheduling.

However, the scheme may not work if the environment is dynamic. For example. in a radar

tracking system, the number of objects to be monitored may be dynamically changing all the

time. In an environment where hardware may fail independently, a processor's load may change

if it must take over some jobs which used to be performed by a now failed processor. If a job is

in progress and suddenly the scheduler decides to change its deadline, it may have to stop its

computation immediately. Thus, in the radar tracking application. if the screen is to be updated

every 10 seconds, the job to determine the positions of all "visible" objects must complete within

that time. If there are 100 objects in the field of view, but the procedure can track the exact

locations for only 30 of them in the allotted 10 seconds, the system may miss some crucial objects

among the 50 unprocessed objects. In this case, it is more desirable to obtain the approximate

locations for all 100 objects. Such a system has two other advantages. It is flexible - if the sky

suddenly gets cluttered, it should be possible to decrease the amount of time spent on each

object, and thus get a more fuzzy view, but continue tracking all of them. Secondly, it lends

itself to priority schemes - if, after viewing all objects. the system decides that some of these

objects are more interesting, more time may be spent on them to get a more accurate

positioning. Thus, sometimes i t is advantageous in a real-time system not to carry out every job

to completion, but t o obtain results while computations are still incomplete.

.

In this paper, we propose several schemes for obtaining and utilizing results from partially

completed computations. Since the computations did not complete, their results are imprecise.

We suggest two different approaches that the programmer may use to construct procedures

which are capable of producing imprecise results. The first approach is termed the milestone

approach. Its central idea is to record meaningful partial results obtained at different points in

the execution of the procedure; in the event of a deadline. the last recorded values are used as the

result from the procedure. The second approach, called the sieve approach, defines sections of

code that cause existing results t o become more precise. For example, in image processing,

enhancement routines are used which increase the contrast in the picture. The system is allowed

to decide if sufficient time is available to perform extra enhancements. Not executing them

amounts to producing a result of inferior quality but will require less processing time.

Both these approaches are particularly well-suited to iterative algorithms, though they can

be applied to other kinds of procedures also. Many numerical algorithms involve iterating to

improve precision iPizer83j. Several studies IBasu80, Finance85, Turski841 have been conducted

on how computations can be recast into an iterative form. The SIFT system ‘Wensley78; records

partial results at the end of each iteration. and uses them for error checking in a replicated

system. We think that using iteration to improve results is common enough in real-time syscems

for our techniques to be of widespread use.

The rest of this paper is organized as follows. Section 2 outlines the milestone approach and

the sieve approach, and compares them. Section 3 presents a generalized model of imprecise

computation, and the relationship of the two approaches to that general model. Section 4

describes Concord, a system that supports imprecise computations. Section 3 discusses

extensions to the imprecise results technique. We give our conclusions in Section 6.

1.1. Relationship to other work

Both sieves and milestones are presented as language primitives that take advantage of

system support to provide clean, easy-to-use aids for real-time programming. While it is

possible to achieve the same effects with the constructs currently available in real-time

languages. it would be awkward to do so. and the resulting program wouid not be semantically

2

clean or clear. So these techniques do address a problem which existing languages do not handle

very well - that of terminating execution of a procedure before it is complete, and obtaining

results from it. In fact, we feel that imprecise computation is a more general model than the

traditional precise model. Always executing a procedure through to completion is a special case

of imprecise computations in which the imprecision is reduced to a minimum.

Our approach to real-time system programming is different from other work on real-time

programming languages such as Real-Time Euclid !Kligerman86i, Ada' [DoD83\ and Modula

[Wirthy'l]. Most of them provide primitives so that programmers may have more precise

control, and environments cause less variance, in execution time. They also provide ways to

specify real-time delays in the code. For example, Real-time Euclid allows no dynamic data

structures and recursive invocations which may have unpredictable execution time. .Ida provides

delay statements and pragmas to specify time constraints. .Moduia restricts context switches, and

expects good programming technique and testing to ensure that deadlines are met. We consider

these methods to be low-level, in that they expect the programmers to manage the timing issues

themselves, with little or no assistance from the language or the system. The programmer has to

explicitly ensure that each piece of code meets its deadline, and is only assured of minimal

interference from the system. Confidence that the system will meet its deadline usually cannot

be established until the program is tested under many dynamic circumstances.

Language primitives allowing programmers to specify only a desired completion time are

not good enough for hard real-time systems. Our approach, instead, attempts to transfer the

burden of meeting deadlines to the supporting system to a large extent, and only requires the

programmer to assist it in some simple ways. Our primitives work at the procedure level. and

leave i t to the system to decide whether there is enough time to execute segments of code.

Because they relate to the algorithm, our primitives can be added to any programming language.

It is not our intention to suggest that this approach is in all respects superior to others: it

requires a powerful scheduler, and in some cases may involve extra overhead. However. our

'-4da is a registered trademark of the U.S. Govt. - Ada Joint Program Office.

3

scheme can handle cases that traditional approaches cannot. It is our objective to explore an

alternative approach to real-time programming and to demonstrate that it can be easily used.

2. Primitives for imprecise computation

2.1. The milestone approach

Many computations perform their operation in distinct stages or phases :Chandy83,

Lampson76l. After each stage, the system has solved more of the problem and therefore

produces an intermediate result which is closer to its final form. I t is this idea which motivates

our milestone approach of saving imprecise results of distinct significance. In case that the

system is t o terminate immediately, the last saved imprecise result is returned as the final result

of the job.

In this approach, the primary assumption is that the result from the procedure increases

monotonically in correctness as the procedure progresses towards completion. Therefore, the

longer a procedure executes, the more correct the result is. This corresponds to a continuous

correctness function as shown in Figure 1. C,(t) is the correctness of the result a t time t. The

time tm represents the minimum time it takes for the procedure to begin to produce a useful

result. In practice, because software consists of discrete chunks of code (e.g. loops). correctness

can be better represented as a staircase function as shown in Figure 2. Each step indicates the

completion of another phase of the computation, such as another iteration of a loop. We suggest

that each step could form a "milestone", and the intermediate results at the end of each step

could be saved. If the procedure terminates prematurely. the last set of recorded values could be

returned as the most accurate results available from the procedure.

2.1.1. Features of the approach

The system model for the milestone approach is that of client!s rv r. The client, r caller

procedure, invokes the server, or callee. providing i t with a set of input parameters. The

deadline of the requested operation can be part of the input parameters if it is known to the

client at the moment of invocation. Otherwise, the system needs to provide some mechanism to

,

Figure 1. A continuous correctness function

I I

4 't

Figure 2. A staircase correctness function

inform and to stop the server when the deadline becomes known. The callee starts executing the

procedure when the request is received. If enough time is available, it produces the required

results and returns them to the caller. On the other hand, if the deadline is reached while the

callee is still executing, it terminates immediately, and returns a set of imprecise results instead.

Two language primitives are used by the programmer to specify a computation involving

milestones. In the callee. the

impreturn(vartabfe-list) command is used to indicate that a milestone has been reached. The

current result value is always the first variable in the list. The values of the variables in the list

other than the result variable constitute the intermediate results available at the milestone. This

list should include any global variables that may be modified by the procedure. because if the

Our proposed primitives use the syntax of the C language.

5

global is modified subsequent to the milestone, but computation is terminated before the next

milestone, the global may end up with a value that is inconsistent with the rest of the system.

This variable-list would thus, in the general case, be a superset of the values normally returned

as results if the call ran through to completion. In addition to global variables, the variable-list

may also include some error indicators which may be used by the caller to determine how precise

the result is.

The caller uses the impresult(procnarne, handler) command to indicate whether milestones

are to be recorded by the procedure named procname. I t is possible that even if the callee

procedure contains specifications of milestones, the caller may not wish to record milestones and

receive partial results. This may be because there is enough time to complete the request, thus

there is no need to incur the additional overhead, or because imprecise results are unacceptable.

The impresult command also specifies a handler which interprets the values of the intermediate

results returned along with the result variable. The handler accepts the complete set of

intermediate values, and performs appropriate modifications to the result variables so that they

can be meaningfully utilized. For example, a caller may contain statements like

...
impresult(sum, eztrapolate);

total = sum(artayA);

...

and the handler eztrapolate is defined as

eztrapolate(z, z, y) float z, 2, y;

I
I

z = z * y / 2 ;

return(z);

The impresult statement associates the handler eztrapolate with the server sum and triggers the

milestone primitives implemented in sum. Assuming that the impreturn statement in sum

returns the total array size in the third variable (i.e. y) and the number of array elements already

processed in the second variable (Le. x), the handler can compute the expected result for the

whole array using the current result z by the formula z*y/x and returns that as the precise

result. In general, the handler may perform the function of correlating the variables in the list.

applying any transformations or compensation necessary, and arriving at a set of modifications

to the intermediate result. The handler is invoked only if the computation returns an imprecise

result. If the callee terminates normally, the handler is bypassed entirely.

It is necessary to specify an imprecise result handler before invoking a server for the first

time, to trigger the milestone mechanism. By default, the system assumes that the caller expects

a precise result. It is also possible that the caller may want t o associate different handlers within

different calling instances so that imprecise results can be interpreted in different ways. X

program can change the association between a callee and its handler by assigning a different

handler using the impresult statement. There are two special handlers defined for the impresult

command: a NULL handler indicates that the milestone mechanism in the callee should be

utilized, but no special handling of the imprecise result is necessary (i.e. the imprecise result is

accepted as is); an OFF handler indicates that the milestone mechanism is to be turned off. This

is needed because once a handler has been associated with a procedure, it continues to be

associated until the next invocation of impresult.

2.1.2. Design and semantics of milestone primitives

One of our design decisions for both the milestone primitives and the sieve primitive to be

discussed later is that it must follow the C syntax so that it is readily compilable using a

standard C compiler. There are many advantages to this approach besides saving the trouble of

changing the C compiler. First, an application program designed with the imprecise system

support in mind can be run on a normal system without modification. All the normal system

needs to do is provide two no-op functions for the impresult and impreturn statements in order

to make it behave like normal application programs. Second, it provides transparency. I t is

7

possible to change the mechanism for producing imprecise results without changing the source

and recompiling. I t is even possible to provide special architectural support for the primitives

without rewriting any application.

The semantics of the primitives is similar to that of exception handling [Goodenough73].

Recording an imprecise result with impresult is like raising an exception condition; the difference

is that the callee is terminated in the latter case of exceptions but not in the former case.

Executing an impreturn is like handling an exception, especially if the exception model is t ha t of

resumption. The impresult mechanism resembles the signal mechanism of C. The milestone

approach itself is a special case of exception mechanisms. The reason for the imprecise

"exception" is the insufficient execution time.

2.2. The sieve approach

The sieve approach is based on the concept of sieve functions. Sieves are functions whose

only purpose is t o "refine" their inputs, i.e. make them more precise. The outputs correspond in

number and type to the inputs, and are semantically more precise versions of them. An example

of this is the Gauss-Seidel iterations method for solving simultaneous equations 'Stark701. In

this method, all the unknowns are initialized to arbitrary values, usually 1. Then each equation

is used to solve for one unknown, till all the unknowns have a new set of values. Thus, a

complete iteration of this technique starts with a set of values, and refines them to produce

better approximations to the value of each unknown.

Sieve functions have the delightful property that it should not be fatal to the correctness of

the procedure if a sieve is not executed. Such procedures are more common than it might seem.

For instance, the loop body of many iterative functions can be viewed as a sieve because each

iteration computes a closer approximation to the final answer. In practice, it is not possible to

tell syntactically whether a given procedure is a sieve or not. Thus, in the above example of

Gaussian iteration, the input values might be all 1.0, and the outputs might be 1.8, 2.1, 1.7 and

so on. Therefore it is left t o the programmer to ascertain that any procedure designated as a

sieve really does refine its inputs. Actually, any section of code may be designated as a sieve if it

refines the result variables and there is no other side effect produced by the code.

8

The sieve approach is based on the assumption that sieves perform computation in order to

increase precision, and as a corollary, they may be bypassed (not executed) and the effect would

be simply loss of precision. This provides a way to execute procedures faster at the cost of

imprecision. The programmer specifies that some of the computations are sieves, and the system

has the option of either executing the sieve or discarding it. This decision is made by the system

according to the nearness of the deadline. If the deadline is very close, the system may opt t o

omit all sieves and just conduct the simplest computation through the rest of the procedure to

return an imprecise result.

The semantics of the sieve approach can be understood in terms of the staircase correctness

function. Each step of the correctness function corresponds to the execution of a sieve, which

increases the correctness by an amount corresponding to the height of the step, and takes time

corresponding to the width. Omitting a sieve has the effect of removing a step, resulting in the

rest of the correctness function moving to the left (taking less time) and finishing a t a Lower level

(the result is less precise). This is shown in Figure 3, where omitting a sieve reduces the

correctness from 1 to C,, while the execution time decreases from t z to t , .

, I

I rl
c3

Figure 3. Omission of a sieve

9

2.2.1. Features of the approach

The sieve approach is concerned only with the callee. A section of code in the callee which

constitutes a sieve is bracketed by the sieve command:

sieve I
.... /* code for the s ieve *,/

....

During execution, the system executes these sieves if the deadline has not yet been reached. Once

the deadline is reached or getting close, the sieves are skipped, and a result is produced as fast as

possible. One significant aspect of this is that the result may be produced not a t the deadline but

shortly thereafter. This is acceptable if the deadline is flexible, i.e. it is a soft real-time system.

It is not acceptable if the deadline represents an emergency, such as a robot crashing into a wall.

However, if the program can be written so that the sieve is the last section of code in the

procedure, skipping it makes the result immediately available. Another noteworthy aspect is

that using the sieve approach, the caller has no way of telling whether the procedure executed

normally or some of the sieves were skipped to make the deadline.

This approach is even more effective if the expected time of execution of each sieve is also

provided. This gives the system more flexibility in scheduling to meet hard deadlines. The

system can decide which sieves to execute so that the computation can be finished in time and yet

the result is most precise. It can also make trade-offs, if some of the sieves are to be executed

repeatedly. For example, if sieve S1 is normally iterated 100 times and sieve 52 is to be iterated

30 times, and if half the normal execution time is available, each sieve may be executed half as

many times as requested. If the two sieves work on different variables, this has the effect of

distributing the imprecision instead of lumping i t all on one variable.

to

2.3. Comparison of the two approaches

The milestone approach is basically a pragmatic, system-level technique. It is more difficult

to formalize, but easy to use from the programmer’s point of view. It is explicit in permitting a

variety of imprecise results from the procedure. The selection among these mechanisms is

implicit and inflexible - it is chosen by reaching a deadline. It does not need complex support.

The milestone approach is a passive approach in that termination is determined by the external

intervention. The program behaves optimistically - i t always assumes that it has enough time to

finish. Saving imprecise results is simply a precaution.

The sieve approach is a semantic, language-level technique. It can be better formalized,

using the formalism similar to a guarded command IDijkstra75!. I t is implicit in the way it

specifies the possible set of imprecise results returned, but explicit in the selection mechanism,

which is built into the system. The sieve approach is an active approach in that the program

explicitly decides whether a sieve is to be executed or not. The program decision is always

pessimistic; it executes a piece of code only when it knows that i t can be finished.

It is expected that users will use sieves when the computation naturally takes the form of

successive refinement of values, and use milestones for saving intermediate results after distinct

stages of computation. Actually, users may use both primitives in one program. I t is desirable

to use milestones to save and produce some basic results before using sieves to improve them

further as long as there are time and resources available.

3. Model of imprecise computations

Computations performed by a computer program are usually modeled as transform

functions which transform some input values and an initial state of the program to a final s ta te

with some output values produced. In reality, however: a program execution with the same input

and initial state may actually produce different results due to the differences in the environment.

In some applications, these differences are expected, thus all different results are considered to be

correct. In other applications, these different results may be regarded as approximations to a

good result and therefore are accepted with reservations.

11

In a distributed system, variations in communication delays may lead to different execution

sequences. If two separate requests are entered into an airline reservation system simultaneously

from different places, either one may be processed first. The nondeterminism inherited in the

system may cause different results to be produced, but both execution sequences are correct. In a

real-time system, deadline constraints may cause a procedure execution to be terminated

prematurely. In a fault-tolerant system, crashes and recoveries can result in various possible

execution sequences, and the results obtained may not be identical for all of them (due to "fail-

soft" mechanisms).

I t is therefore desirable to have a model of computation that includes the factor of

environments. The environment can be modeled as a state machine which interacts with the

state machines of concurrent programs. However, such modeling is complicated and often

unnecessary. It is often enough to introduce the environment as a parameter of a computation

and assume that it is unchanged throughout the computation. For example, deadline is a

parameter which can be specified before the computation starts. The fact whether it is

predefined or not is irrelevant to the actual computation performed. Some aspects of the

environmental variations can be hidden from the program altogether, they will not be shown in

the computation model. Other aspects may affect the program execution and therefore should be

dealt with at the program and user level.

Imprecise results caused by time restrictions can be viewed as a special case of a more

general model which takes into account the effect of variations in environment on computations.

In a real-time system, environment inputs are usually handled by the system scheduler which in

turn changes the scheduling decision in the form of deadlines and priorities. The environment

can also influence the computation directly by crashing a particular processor or by interrupting

a computation.

We define a general parameter E to be the subset of the environmental state which will

affect the execution of a program P. We model the computation C which is an instantiation of

P by the following transition function:

12

.

C : I X S x E - 0 X S (1)

where S is the set of states of the program P, I is set of input values, and 0 is the set of output

values. In other words, given an initial state S, input values I, and an environment state E, we

have

(0 , s ') = C (I , S , E) (2)

for some output value 0 and final state S'. We are not concerned here with any side effects the

computation C might have on the environment, The fact t ha t the result of Computation C

might lead the environment into a state E' different from its initial state E is thus not expressed

explicitly in (1) and (2).

We can use the model t o reason about the different behaviors of a program under different

environments. A program which produces different results under different environments is

logically equivalent to a set of programs free of environmental influences that produce

corresponding results. Similarly, using a single server to produce a series of imprecise results is

logically equivalent to executing many copies of the server with different execution times.

Therefore, the original program does not uniquely define the actual computation which will be

performed. Rather, it defines a set of possibilities.

The imprecise computation model can provide better performance and reliability because it

can endure imprecisions in the environment and produce a set of results. The problem is how to

choose the best result from the set of possible results. In a multi-version system, the result from

a server running on the most precise hardware is usually regarded as the most accurate.

Sometimes the result from the fastest server is selected if the performance is more important

than accuracy.

In this paper, we are particularly interested in environmental imprecision in execution time

and its effect on the output results. If the precision of the result produced increases

monotonically with execution time, then we can always choose the result produced by the

computation with the longest execution time. *Most applications do possess this monotone

property. Our primitives, based on the imprecise computation model, therefore provide users

with a simple way to obtain better results from incomplete computations.

13

4. The Concord system

We are designing the Concord system iLin871 which can support imprecise computations.

The system provides both a programming tool so that a user can design imprecise computations,

and run-time support so that imprecise results can be reliably and meaningfully returned. Such

a system would give users much greater flexibility in implementing their applications.

The Concord project uses the milestone approach to permit procedures to return imprecise

results. To record the milestone results, and return the latest if the deadline is reached, a

supervisor is introduced between the caller and callee. The caller sends the call t o the supervisor.

The supervisor starts up the callee, and periodically receives the milestone results from it. The

supervisor keeps track of the last set of results received. If the deadline is reached, i t terminates

the callee, and sends the imprecise result to the caller. If the callee completes, the value returned

is passed on to the caller. The configuration is shown in Figure 1.

This implementation has the advantages of being simple, having comparatively little

overhead, and of being modular. It separates the functions of the callee from the system support

issue of recording the results. On a distributed system, i t has the additional advantage of fault-

tolerance if the supervisor is on a different machine from the callee.

The introduction of the supervisor is not the only way to implement the milestone

approach. The system can reserve a milestone space in the cailee’s address space for

Client
I 1

Server -
Supervisor I , 1 Caller 1 > j

I I I r - - - - ! m I

! Handler 1 -z--- -
i

I Callee !
I I

Figure 4. Concord process structure

14

intermediate results. The size of the milestone space is exactly the same as the size of the final

result variables plus the total size of the variable list specified in the impreturn command. -411

these are known at the compile time. During run-time, when an impreturn statement is

encountered, all the system has to do is to copy the current value of all those variables into the

milestone space. Since i t is always the last set of values that are returned, only one such set

needs to be kept. When a n imprecise value is returned, the handler is invoked with the

intermediate results.

Concord also supports the sieve approach. As discussed later, Concord includes a

sophisticated system scheduler. Each sieve primitive queries the scheduler to determine whether

enough time is available for the sieve to be executed. Using the C preprocessor, the sieve

primitive is translated to if (enough-tirne()), which queries the system scheduler. This

preprocessor statement is contained in a header file which is part of the Concord language

library, discussed in the next subsection.

4.1. Run-time system implementation

Concord will be implemented on a network of Sun workstations. As mentioned before, we

uses C as the target language because it is popular and easy to work with. We may switch to

some other language which is more suitable for distributed applications after we have some

I

Concord li rary client , B

- _ - - - - _ _ _ _ _ _

server

4 Distribution spec -

Figure 5. Concord language processor

15

experience with Concord. Concord has two components: the language processor and the run-

time system. The language processor, shown in Figure 5, includes libraries for the impreturn and

impresult primitives, and a loader for distributing the modules produced by the compiler among

the different processors in the system. The sieve primitive is very easy to support. It is simply

converted to a call to the system scheduler to determine if enough time is left t o execute the

sieve. The impreturn primitive is a procedure call to the supervisor, which records the

arguments provided as a milestone. The impresult primitive is implemented as a procedure call

to the run-time system, to specify whether the R P C messages should be issued to the supervisor,

or directly to the cailee in the event that milestones need not be recorded. The impresult

procedure also associates a handler to the RPC, so that if the computation terminates

prematurely, the run-time system will invoke the handler to process the imprecise result.

The Concord run-time support is a layered distributed system which can support imprecise

result communications. For the Concord prototype we plan to reuse as much as possible the

run-time system designed for the Resilient Procedure (RP) project iLin86;. Both projects

support imprecise computations. RP supports imprecision arising from multi-version software

[Chen78] and hardware while Concord supports imprecision in execution time. It is our ultimate

goal t o unify the projects together t o support general imprecise computations.

4.2. Scheduling in Concord

The proposed Concord system includes a sophisticated scheduler. This scheduler is designed

to take advantage of the possibilities for returning imprecise results from partial computations.

This has substantial impact on scheduling, because the emphasis changes from meeting deadlines

to finding the optimum schedule that will minimize the imprecision in the results. The concept

of average error of all results computed is defined, and the objective is to minimize this. We are

currently considering various heuristic algorithms to produce near-optimal schedules 'Liu87;.

The scheduler also addresses the problem of not allowing imprecision in a particular value to

accumulate too much due to repeated calls to some procedure.

Sieves interact with this scheduler directly. Each sieve command is translated into a call to

a system scheduler routine which makes the decision to ascertain whether sufficient time is left

16

before the deadline to execute the sieve. If all sieve functions include time estimates, the

scheduler can analyze all these estimates at t.he beginning of the procedure, and determine which

sieves are to be executed in order to optimize the use of the available time, similar to static

scheduling.

To use this approach, the scheduler must be intelligent in order to get the proper benefit

from the scheme. In general, this is not a problem because most real-time systems have a

sophisticated scheduler. The possibility of skipping certain sieves makes the scheduling decision

much more flexible.

5. Extensions to the scheme

5.1. Applications in other areas

Imprecise computations as a technique for handling environmental variations has

applications in fault tolerance and distributed systems. The milestone technique can be used to

provide checkpoints for fault-tolerance. If the supervisor is on a machine different from the

callee, and the callee’s machine crashes, the supervisor has a partial result which it can return to

the caller’s handler. The handler h a s the option of either accepting the imprecise result, or

resuming the callee from that checkpoint on a different processor. It can even invoke a different

procedure to perform some patchwork to make the result more acceptably precise.

Since the model of computation includes the idea of a procedure being actually a set of

computations among which one is selected by the environment, it can easily be extended to

include the idea of N-version programming iChen781 and Resilient Procedures [Lin861 for fault

tolerance. In both techniques, several computations are performed and the final result is chosen

from among the different results obtained.

In a distributed system, there are often variations in processor precision, memory etc.

among different nodes. The model of imprecise computation can be used to specify what

environment is required for each computation, facilitating optimal resource allocation. hlso, if

some resource is not available, or is deficient in some respect (such as less precision) it is possible

to use the imprecise result t o gauge if the error is within acceptable limits - the handler will

17

realize that an environmental variation has occurred, and can take appropriate action. It is also

possible to simulate some resource which is not available, to bring the precision back to

acceptable limits.

5.2. Future extensions

The multi-version concept can be used to define several versions of a procedure, of which

one will be executed for which the environment is appropriate. Thus, i t may be possible to have

several versions of a procedure, which take differing amounts of time, and one will be picked

which best matches the time available. Since the selection process is entirely a matter of

matching available environmental resources to requirements, it can be done entirely at the

system support level.

The supervisor in the milestone approach can take a more active role by using extrapolation

to predict the final result instead of merely returning the last one. This is possible when the

successive milestones form a pattern, as would be the case if they were the results of successive

iterations of a numerical algorithm. The extrapolation procedure can be user-defined.

Computations which do not increase monotonically in correctness can be made suitable for

the milestone approach by appropriate choice of milestones. The idea is to pick points on the

curve of fluctuating correctness, so that they form a monotonically rising curve. This will satisfy

the criterion that later results should be more precise than earlier ones.

The results recorded in the milestone approach can be enhanced to constitute a checkpoint

so that it is possible to perform forward recovery for fault-tolerance purposes. If the values

constitute a checkpoint, and the partial results are not acceptable, they can be used to resume

the computation from where i t was terminated.

6. Conclusions

The basic concept of returning imprecise results from procedures to allow for environmental

variations has several applications, particularly in the area of real-time programming. It can be

used to allow the user to separate out the algorithm code from the code that deals with

18

massaging results t o allow for machine- and environment- dependent limitations, and abstract

out the non-algorithmic code in special handlers. On the one hand it allows the system to take

up as much of the burden as possible in the form of system support, and on the other hand i t

gives the user power, flexibility and control. The approaches discussed are not difficult t o

implement, and do not involve much overhead.

We see our approach as being the “natural” way to handle partially complete computations.

When humans are faced with the same situation of not being able to complete a task, they tend

to store the results obtained so far, because those results may be useful later. I t seems reasonable

for computers to do the same, rather then discard incomplete computations. We would like to

see the concept of imprecision to be built into programming languages intended for production

code.

References

[BasuSO]
Basu, A.K., “On development of iterative programs from function specifications,” IEEE
Trans. Software Eng., vol. SE-6, pp. 170-182, -Mar. 1980.

:Blazewics83]
Blazewics, J., J. K. Lenstra, and A. H. G. Rinnooy Kan, ”Scheduling subject to resource
constraints: Classification and complexity,” Disc. -4ppfied Math., vol. 3, pp. 11-24, 1983.

IChandy831
, Chandy, K. M., J. Misra, and L.,M. Haas, “Distributed deadlock detection,” ACM

Transactions on Computer Systems, ~01.1, No.2, pp. 144-156, -May 1983.

’Chen781
Chen, L. and Avizienis, A., “N-version programming: A fault-tolerance approach to
reliability of software operation,” in Proc. 8th Symp. Fault- Tolerance Computing, 1978, pp.
3-9.

[Dijkstra75\
Dijkstra, E.W., “Guarded commands, nondeterrninacy, and formal derivation of
programs,” Comm. ACM, Vol. 18, pp. 453-457, Aug. 1975.

19

[DoD83]
Reference Manual for the Ada programming language, (ANSI/MIL-STD-l815A), U.S. Dep.
Defense, Washington D.C., Jan. 1983.

[Finance851
Finance, J.-P., and Souquieres J., “A method and a language for constructing iterative
programs,” Science of Computer Programming, vo1.5, pp. 201-218, 1985.

[Goodenough751
Goodenough, J.B., “Exception handling: issues and a proposed notation,” CACM, vol. 18,
pp. 683-696, Dec. 1975.

jKligerman861
Kligerman, E., and A. D. Stoyenko, “Real-time Euclid: a language for reliable real-time
systems,” IEEE Trans. on Software Eng., vol. SE-12, No. 9, pp. 941-949, Sep. 1986.

[Lampson761
Lampson, B.W., and H.E. Sturgis, “Crash recovery in a distributed storage system.”
unpublished paper, Comp. Sci. Lab., Xeros Palo Alto Research Center, Palo Alto. C=\, 1976.

1 L in8 61
Lin, K.-J., “Resilient procedures - an approach to highly available system,” in Proc. IEEE
Computer Society International Conference on Computer Languages, Miamit pp. 98-106,
Oct. 1986.

:Lin87]
Lin, K. J., S. Natarajan, and J. W. S.-Liu, ”Concord: A distributed system making use of
imprecise results,” Technical Report No. UIUCDCS-R-87-1330, Department of Computer
Science, University of Illinois a t Urbana-Champaign, 1987.

[Liu73]
Liu, C. L. and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard
real-time environment,” J. Assoc. Comput. Mach., vol. 20, pp. 46-61, 1973.

[Liu87]
Liu, J. W. S., Lin, K. J., and S. Natarajan, “Scheduling real-time, periodic jobs using
imprecise results,” submitted for publication.

[Pizer83\
Pizer, S.M., T o Compute Numerically, Little, Brown and Co., Boston, MA, 1983.

[S tark701
Stark, P.A., Introduction to Numerical Methods, The Macmillan Company, London, 1970.

80

(Turski841
Turski, W.M., ”On programming by iterations,” IEEE Trans. So]ttware Eng., vol. SE-10,
pp. 175-178, Mar. 1984.

[Wensley78]
Wensley, J.H. et al, “SIFT: Design and analysis of a fault-tolerant computer for aircraft
control,” Proc. IEEE, vo1.66, pp. 1240-1255, Oct. 1978.

IWirth771
Wirth, N., “Towards a discipline of real-time programming,” CACM, vol. 20, pp.577-383,
Aug. 1977.

21

